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The natural frequencies of an elastic thin plate placed into a rectangular hole and connected to
the rigid bottom slab of a rectangular container "lled with #uid having a free surface are
studied. The #uid is assumed to be incompressible, inviscid and irrotational, and the e!ect of
surface waves is neglected. An analytical-Ritz method is developed to study the vibratory
characteristics of the plate in contact with the #uid. First of all, the exact expression of the
motion of the #uid is obtained, in which the unknown coe$cients are determined by using the
method of separation of variables and the method of Fourier series expansion. Then, the Ritz
approach is used to obtain the frequency equation of the system. The vibrating beam functions
are adopted as the admissible functions for the wet-mode expansion of the plate, and the added
virtual mass incremental (AVMI) matrices are obtained for plates with arbitrary boundary
conditions. Finally, a convergence study is carried out and some numerical results are given.
The accuracy of AVMI factor solutions is discussed by comparing with the more accurate
analytical-Ritz solutions presented in this paper. Furthermore, It is seen that the present
method is also suitable for the vibration analysis of rectangular plates in contact with in"nite
#uid by taking the "nite, but larger size #uid domain as an approximation in the computation.
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1. INTRODUCTION

THE INTERACTION OF FLUID AND PLATE has been a topic of interest among researchers (Lamb
1921; Meyerho! 1970; Amabili et al. 1995) for many years. It is obvious that a plate in
contact with #uid behaves di!erently from the plate in air. The existing investigations to
#uid}plate interaction show that the natural frequencies of a plate in contact with #uid
decrease signi"cantly compared with those in air, especially for the fundamental frequency.
Various methods have been applied to resolve the problem of #uid}plate interaction, such
as analytical methods (Bauer 1981; Soedel & Soedel 1994), semi-analytical methods
(Cheung et al. 1985; Amabili et al. 1996) and numerical methods (Hylarides & Vorus 1982;
Marcus 1978). There is no doubt that numerical methods such as "nite element and
boundary element can resolve the problems of #uid}plate interaction; however, the model-
ling, code preparation and numerical computation require a long time. While the analytical
method can give exact or accurate solutions, it is however limited to very special and simple
cases. Semi-analytical methods, which combine the advantages of wide applicability of the
numerical method and the high accuracy of the analytical method, can solve the problems
at a small computational cost.
0889}9746/00/040339#19 $35.00/0 ( 2000 Academic Press
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A review of the literature reveals that most of the studies on #uid}plate interaction are
about circular plates. For example, Kwak (1991) used Hankel transformation to obtain the
nondimensional added virtual mass incremental (NAVMI) factors for a circular plate
placed on the free #uid surface of an in"nite #uid domain. The same problem was
considered by Amabili et al. (1995) to analyse the e!ect of Poisson's ratio on NAVMI
factors in detail. Some further investigations on circular and annular plates in contact with
#uid in an in"nite domain were carried out by Amabili (1996), Amabili & Kwak (1996) and
Amabili (1996). Chiba (1993, 1994) studied the axisymmetric vibration of the elastic bottom
in a cylindrical tank "lled with #uid by considering the e!ects of elastic foundation and
hydrostatic pressure. Nagaya & Takeuchi (1984) studied the vibration of the bottom in an
arbitrarily shaped cylindrical container "lled with #uid. In comparison, the investigation on
the vibration of rectangular plates in contact with #uid is very limited. Bauer (1981) studied
the vibration of a simply supported elastic bottom in a rectangular tank "lled with #uid.
Marcus (1978), and Fu & Price (1987) studied the vibration of vertical or horizontal
cantilevered rectangular plates immersed in #uid. Soedel & Soedel (1994) studied the free
and forced vibration of a simply supported rectangular plate carrying liquid with reservoir
conditions at its edges. Recently, Kwak (1996) further studied the NAVMI factors of
rectangular plates acted upon by water in an in"nite domain by using the Rayleigh}Ritz
method combined with the Green function method. No work concerning the problem
studied in the present paper has been found in the open literature by the authors.

In this paper, an analytical-Ritz method is developed to analyse the interaction of
horizontal rectangular plates in contact with #uid on one side. The elastic rectangular
plate is considered as a part of the rigid bottom of a rectangular container, and its edges
are parallel to those of the bottom. The high accuracy and small computational cost of the
method proposed herein are demonstrated by the convergency studies. The accuracy of
the AVMI factor solutions are examined, and the e!ects of #uid}plate size and density
ratios on the natural frequencies of the #uid}plate system are studied in detail. It can be seen
that the method proposed is also applicable for analysing the vibration of a rectangular
plate in contact with #uid in an in"nite domain by taking a "nite but larger size #uid
domain as a replacement in the computation.

2. PROBLEM OF INVESTIGATION

Let us consider a rectangular plate with width a, length b, thickness t
p
, and mass density o

p
,

which is a part of the horizontal rigid bottom of a rectangular container "lled with #uid, as
shown in Figure 1. The width and length of the bottom are c and d, respectively. The
container has four vertical rigid walls. The plate is assumed to be made of homogeneous and
isotropic material. The e!ects of shear deformation and rotary inertia are not considered, so
the Kirchho! theory of plate vibration is applicable. The #uid with depth h and mass
density o

f
is considered to be incompressible, inviscid and irrotational. The #uid}plate

system has two families of modes: the sloshing and the bulging ones. The sloshing modes
are caused by the oscillation of the #uid free surface due to the rigid body movement of
the container (these modes can also be a!ected by the #exibility of the container but are
characteristic of a rigid tank). In this case, the amplitude of the free surface wave is dominant
over that of the plate vibration, and when the #uid-dominated modes (sloshing modes) are
in resonance, the kinetic and potential vibration energies are mainly in the #uid. On the
other hand, the bulging modes are related to the vibration of the #exible plate which moves
the #uid. In such a case, the amplitude of the plate vibration is dominant over that of the free
surface wave, and when the plate-dominated modes (bulging modes) are in resonance, the
potential vibration energy is mainly in the form of strain energy in the plate. Here our



Figure 1. Geometry of the #uid}plate interaction and coordinate system.
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attention is focused on the analysis of the bulging modes, which are very important for
structural designers because failures of elastic plates in fatigue are most likely to be due to
plate-dominated mode resonances. It is also well known that the in#uence of free surface
waves on bulging modes of structures which are not very #exible (Amabili & Dalpiaz 1998;
Kondo 1981) is low and for many applications involving primarily bulging modes the
simpli"ed free surface condition (zero dynamic pressure) can be applied with su$cient
accuracy.

Two sets of Cartesian coordinates (oxyz and o@x@y@z), whose corresponding axes are
parallel to each other, are developed to describe the motion of the #uid and the vibration of
the plate, respectively. The origin o@ of the coordinate system o@x@y@z is located at (x

0
, y

0
, 0)

in the coordinate system oxyz, which describes the location of the plate on the bottom. The
dynamic deformation of the plate in the z direction is expressed by w (x@, y@, t).

3. MOTION OF THE FLUID

The motion of the #uid can be described by the velocity potential /(x, y, z, t) and satis"es
the Laplace equation as follows:

L2/

Lx2
#

L2/

Ly2
#

L2/

Lz2
"0 in <

f
, (1)

where <
f

represents the #uid domain. The relations between velocity potential and velocity
of the #uid are: v

x
"!L//Lx , v

y
"!L//Ly, v

z
"!L//Lz .

The conditions of the four vertical impermeable rigid walls of the container are given by

L/

Lx
"0 x"0, c, z"0 to h, (2, 3)

The condition of neglecting surface waves implies zero dynamic pressure on the free surface,

L/

Lt
"0, z"h. (4)
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The condition on the horizontal bottom, a part of which is elastic and the rest rigid, is
expressed by

!

L/
Lz K

z/0

"G
Lw

Lt
,

0,

x
0
4x4x

0
#a, y

0
4y4y

0
#b,

the other parts of the bottom.
(5)

Assuming that the solution of / (x, y, z, t) has the form of

/"X(x)> (y)Z(z)¹Q (t), (6)

and applying the method of separation of variables to equation (1), gives the following three
uncoupled, second-order, ordinary di!erential equations

d2X

dx2
$p2

x
X"0, (7)

d2>

dy2
$p2

y
>"0, (8)

d2Z

dz2
G(p2

x
#p2

y
)Z"0, (9)

where ¹Q (t)"d¹ (t)/dt and both p2
x

and p2
y

are arbitrary nonnegative numbers.
The general solutions of equations (7)}(9) may easily be given from knowledge of

ordinary di!erential equations. Further, considering the boundary conditions (2)}(4), one
obtains the solution of the velocity potential of the #uid as follows:

/ (x, y, z, t)"h¹Q (t)
=
+

m/0

=
+
n/0

A
mn

cos(mnm) cos(nng)F
mn

(f), (10)

where A
mn

(m, n"0, 1, 2,2) are the unknown constants and

F
mn

(f)"G
1!f,
eqmnf!eqmn(2~f),

m"n"0,

the other m and n,
(11)

in which

q
mn
"nbJ(m/a)2#n2 . (12)

In the above equations, the following nondimensional parameters and coordinates are
introduced:

a"c/d, b"h/d, m"x/c, g"y/d, f"z/h. (13)

Assuming that the solution of the dynamic deformation of the plate is in the form of

w (x@, y@, t)"=(x@, y@)¹(t), (14)

and substituting equations (10) and (14) into equation (5) gives

=
+

m/0

=
+
n/0

A
mn

cos(mnm) cos(nng)F@
mn

(f) Df/0

"G
!= (x@, y@),

0,

m
0
4m4m

0
#j, g

0
4g4g

0
#c,

the other parts of the bottom,
(15)
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where

F @
mn

(f)"G
!1,

q
mn

[eqmnf#eqmn(2~f)],
m"n"0,

the other m and n,
(16)

in which the following nondimensional parameters and coordinates are also used:

j"a/c, c"b/d, m
0
"x

0
/c, g

0
"y

0
/d. (17)

Applying the double Fourier series expansion to the two sides of equation (15) in the
domain 04m41, 04g41, the coe$cients A

mn
can be derived exactly in the form of

integral equations, such that

A
mn
"

e
mn

Q
mn

I
mn

, (18)

where

e
mn
"G

1, m"0, n"0,

2, m"0, nO0 or mO0, n"0,

4, the other m and n,

(19)

Q
mn
"G

1,

!q
mn

(1#e2qmn),

m"0, n"0,

the other m and n,
(20)

l
mn
"P

m1

m0 P
g1

g0
=(x@, y@) cos(mnm) cos(nng) dm dg. (21)

In the above equations, m
1
"m

0
#j and g

1
"g

0
#c. Finally, the velocity potential of the

#uid is given by

/"h¹Q (t)
=
+

m/0

=
+
n/0

e
mn

Q
mn

I
mn

cos(mnm) cos(nng)F
mn

(f). (22)

It should be mentioned that the integrals I
mn

include the unknown dynamic deformation
=(x@, y@) of the plate, which will be dealt with later.

4. ENERGY FUNCTIONAL OF THE SYSTEM

Because of the hypothesis of the incompressible, inviscid, irrotational #uid and no surface
waves, only kinetic energy can be attributed to the #uid when the plate vibrates, which is
expressed by ¹

f
, as follows:

¹
f
"

1

2
o
f PPP

Vf

($/)2 dv. (23)

Considering equation (1) and applying Green's theorem to the above equation, the volume
integration can be transformed into a surface integration surrounding the #uid domain
(Lamb 1945), as follows:

¹
f
"

1

2
o
f
D
Sf

/$/ ' n ds. (24)
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where S
f

represents the surface of the #uid domain, and n is the outward vector normal to
the #uid surface. Further considering the boundary conditions (2)}(5), one has

¹
f
"

1

2
o
f
hdc¹Q (t)2

=
+

m/0

=
+
n/0

e
mn

Q
mn

I2
mn

FM
mn

, (25)

in which

FM
mn
"G

1,

1!e2qmn,

m"0, n"0,

the other m and n.
(26)

It is well known that both kinetic energy and strain energy can be attributed to the plate,
which are expressed by ¹

p
and ;

p
, respectively, as follows:

¹
p
"

1

2
o
p
t
p
¹Q (t)2 P

a

0
P

b

0

= (x@, y@)2 dy@ dx@, (27)

;
p
"

1

2
D¹(t)2 P

a

0
P

b

0
GA

L2=

Lx2 B
2
#2

L2=

Lx@2
L2=

Ly@2
#A

L2=

Ly@2B
2

!2(1!l) C
L2=

Lx@2
L2=

Ly@2
!A

L2=

Lx@Ly@B
2

DH dy@ dx@. (28)

where l is the Poisson's ratio and D"Et3
p
/[12(1!l2)] is the #exural rigidity of the plate.

Hence, the Lagrangian function of the #uid}plate system for free vibration is

P"(¹
p
)
.!9

#(¹
f
)
.!9

!(;
p
)
.!9

. (29)

5. FREQUENCY EQUATION

When the plate undergoes free vibration, ¹(t) is a simple harmonic function. Assume that
the dynamic deformation of the plate is in the form of

=(x@, y@)"
J
+
j/1

L
+
l/1

C
jl
f
j
(x@)g

l
(y@) , (30)

where C
jl

are the unknown constants, J and ¸ are the truncated orders of the series and
f
j
(x@), g

l
(y@) are the admissible functions in the x@ and y@ directions, respectively.

Substituting equation (30) into equation (29) and applying the Ritz approach, one has

LP

LC
jl

"0, j"1, 2,2, J, l"1, 2,2 , ¸, (31)

which results in

J
+
j/1

L
+
l/1

[K
jlj
N
l
1!X2(M

jlj
N
l
1#MI

jlj
N
l
1 )]C

jl
"0,

(32)

jM"1, 2,2 , J, lM"1, 2,2, ¸,



VIBRATION OF RECTANGULAR CONTAINER BOTTOM PLATE 345
where

K
jlj
N
l
1"E(2,2)

jj
N F (0,0)

ll
N #k4E (0,0)

jj
N F (2,2)

ll
N #lk2(E (0,2)

jj
N F (2,0)

ll
N #E (2,0)

jj
N F (0,2)

ll
N

#2(1!l)k2E (1,1)
jj
N F (1,1)

ll
N , X2"o

p
t
p
u2a4/D, k"a/b, (33)

M
jlj
N
l
1"E (0,0)

jj
N F (0,0)

ll
N , MI

jlj
N
l
1"

qb
pjc2

=
+

m/0

=
+
n/0

e
mn

Q
mn

FM
mn

EI
mj

EI
mj

N FI
nl
EI

nlM
,

in which u is the radian natural frequency of the #uid}plate system, and

E (r, s)
jj
N "P

1

0

(dr f
j
(m@)/dm@r) (dsf

j
N (m@)/dm@s) dm@,

F (r, s)
ll
1 "P

1

0

(drg
l
(g@)/dg@r) (dsg

l
6 (g@)/dg@s) dg@,

r, s"0, 1, 2, EI
mj
"P

m1

m0
f
j
(m@) cos(mnm) dm,

FI
nl
"P

g1

g0
g
l
(g@) cos(nng) dg,

q"
o
f

o
p

, p"t
p
/b, m@"x@/a, g@"y@/b, (34)

It is obvious that the matrix MI , made up of elements MI
jlj

N
l
1 , represents the coupling e!ect of

#uid}plate interaction, which is equivalent to a generalized distributed mass attached to the
plate and is called added virtual mass incremental (AVMI) matrix (Kwak 1996). It can be
seen that equation (32) is a standard eigenvalue problem; the dimensionless frequency
parameters X

i
(i"1, 2,2 , J]N) and the coe$cients C

jl
( j"1, 2,2 , J, l"1, 2,2, ¸)

corresponding to every X
i
can be easily obtained by using a standard eigenvalue program.

Substituting the results into equation (30) gives the corresponding modes. It should be
noted that when calculating the integrals EI

mj
and FI

nl
in equations (34), the relations

m@"(m!m
0
)/j and g@"(g!g

0
)/c should be used.

For the rectangular plate considered here, the beam eigenfunctions are adopted as the
admissible functions, which can be written in a general form of

f
j
(m@)"a

j
sin(k

j
m@)#b

j
cos(k

j
m@)#c

j
sinh(k

j
m@)#d

j
cosh(k

j
m@), (35)

in which, the constants a
j
, b

j
, c

j
, d

j
and the eigenvalue k

j
may be determined by the

boundary conditions (corresponding to those of the plate) of the beam. For example, for
a simply supported beam, one has

a
j
"1, b

j
"c

j
"d

j
"0, k

j
"jn. (36)

and for a clamped beam, one has

a
j
"(cosh k

j
!cos k

j
)/(sinh k

j
!sin k

j
),

b
j
"!1, c

j
"!a

j
, d

j
"1, cos k

j
cosh k

j
"1. (37)

Similarly, the g
l
(g@) can also be given, but they are not listed here.
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6. NUMERICAL RESULTS

In order to check the accuracy and applicability of the approach proposed in this paper,
some numerical examples are given for simply supported and fully clamped square plates
(k"1). In all the computations, unless otherwise stated, "ve vibrating beam functions and
the following dimensionless parameters are used: Poisson's ratio l"0)3, #uid}plate density
ratio q"0)125 and plate thickness ratio p"0)05. Moreover, the dimensionless radian
natural frequency of the plate in air is represented by XM .

6.1. CONVERGENCE STUDY

Examining equations (32) and (33), one can "nd that the accuracy of the results are
concerned with both the truncated orders J and ¸ of the vibrating beam functions and
the number of terms of the series summing about m and n. Tables 1 and 2 present the
convergence studies on the dimensionless natural frequency X, respectively, for simply
supported and fully clamped square plates (j"c) in contact with a cubic volume of #uid
(meaning that h"c"d) with respect to the truncated orders of vibrating beam functions.
The plates are placed on the middle of the bottom [m

0
"g

0
"(1!j)/2]. Considering the

symmetry of the #uid}plate system, the same numbers of vibrating beam functions in the x@
and y@ directions are used, which are increased steadily from 1 to 5 with an increment of 2, to
demonstrate the monotonic downward convergence behaviour of X.

It is seen that the speed of convergence is very rapid, and in general 3}5 terms of the
vibrating beam functions will give the "rst six natural frequencies of the system with
su$ciently high accuracy. One can also "nd that both the convergence speed and the
accuracy are basically una!ected by the #uid}plate size ratio j (or c), this means that only
a small size matrix needs to be calculated for all cases. Furthermore, the results show that
the natural frequencies of the #uid}plate system approach constant values quickly with the
decrease of the #uid}plate size ratio j (j"c"0 means a semi-in"nite #uid domain). When
j"c" 1

256
, the results have already been very close to values given by Kwak (1996) for the

ba%ed plates in contact with in"nite #uid domain. This implies that the errors will be very
small and can be controlled if a #uid domain of in"nite size (in"nite width and/or length
and/or depth) is replaced by a #uid domain of "nite, but larger size.

Table 3 presents the convergence studies on the eigenvalue X for the same objects as the
foregoing with respect to the number of terms in the double series summing about m and n.
Owing to the symmetry of the system, the same number of terms about m and n are also
used. From the table, one can see that the number of terms in the series for obtaining
satisfactory results are dependent on the size ratio of the #uid}plate system. The smaller
the #uid}plate size ratio, the higher is the number of terms needed in the series. However,
stable numerical computation can always be ensured because of the excellent performance
of the Fourier series expansion.

6.2. AVMI FACTOR SOLUTION

If the admissible functions of the plate in contact with #uid are selected as the exact modes
of the plate in air and if also the AVMI matrix MI is a diagonal one (MI

ij
"0, for iOj), then

the wet modes of the plate are the same as those of the plate in air (dry modes). In this case,
the analysis can be greatly simpli"ed and the dimensionless natural frequencies of the

#uid}plate interaction can easily be obtained by the formula XI
i
"XM

i
/J1#MI

ii
/M

ii
, in

which, M
ii

are the ith diagonal elements of mass matrix M of the plate in air and MI
ii
, called



TABLE 1

The convergence study of natural frequency for a simply supported square plate in
contact with a cubic volume of #uid by using a di!erent number of vibrating beam

functions

J"¸ X
1

X
2

X
3

X
4

X
5

X
6

j"c"1, m"n"30

1 11)858
3 11)844 39)255 39)255 66)633 81)702 85)685
5 11)844 39)243 39)243 66)609 81)643 85)674

j"c"1
2
, m"n"40

1 12)878
3 12)870 40)722 40)722 68)393 83)744 86)774
5 12)870 40)718 40)718 68)389 83)716 86)770

j"c"1
4
, m"n"50

1 13)365
3 13)360 40)878 40)878 68)441 84)362 86)800
5 13)360 40)875 40)875 68)437 84)341 86)797

j"c"1
8
, m"n"80

1 13)615
3 13)611 40)898 40)898 68)444 84)652 86)803
5 13)611 40)895 40)895 68)439 84)633 86)800

j"c" 1
16

, m"n"150

1 13)744
3 13)740 40)900 40)900 68)443 84)799 86)805
5 13)740 40)897 40)897 68)440 84)781 86)801

j"c" 1
128

, m"n"1500

1 13)859
3 13)855 40)900 40)900 68)443 84)927 86)802
5 13)855 40)897 40)897 68)439 84)911 86)798

j"c" 1
256

, m"n"2000

1 13.867
3 13.864 40)901 40)901 68)446 84)944 86)810
5 13)863 40)898 40)898 68)442 84)928 86)807

j"c"0

(Kwak 1996) 13)871 40)903 40)903 68)461

Plate in air

Exact 19)739 49)348 49)348 78)957 98)696 98)696
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TABLE 2

The convergence study of natural frequency for a fully clamped square plate in contact
with a cubic volume of #uid using a di!erent number of vibrating beam functions

J"¸ X
1

X
2

X
3

X
4

X
5

X
6

j"c"1, m"n"30

1 23)365
3 23)121 60)410 60)410 94)240 109)04 116)15
5 23)097 60)293 60)293 93)645 108)65 115)96

j"c"1
2
, m"n"40

1 24)885
3 24)683 61)803 61)803 95)588 111)74 116)98
5 24)662 61)691 61)691 95)009 111)47 116)82

j"c"1
4
, m"n"50

1 25)624
3 25)438 61)955 61)955 95)622 112)73 117)00
5 25)419 61)848 61)848 95)046 112)48 116)84

j"c"1
8
, m"n"80

1 26)002
3 25)824 61)974 91)974 95)624 113)20 117)00
5 25)805 61)867 61)867 95)047 112)97 116)84

j"c" 1
16

, m"n"150

1 26)195
3 26)022 61)976 61)976 95)624 113)44 117)00
5 26)003 61)869 61)869 95)047 113)22 116)84

j"c" 1
128

, m"n"1500

1 26)367
3 26)197 61)977 61)977 95)624 113)66 117)00
5 26)179 61)869 61)869 95)047 113)44 116)84

j"c" 1
256

, m"n"2000

1 26)379
3 26)210 61)977 61)977 95)625 113)68 117)00
5 26)192 61)870 61)870 95)049 113)46 116)84

j"c"0

(Kwak 1996) 26)319 62)051 62)051 95)230

Plate in air

5 35)991 73)420 73)420 108)37 131)64 132)24
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TABLE 3

The convergence study of natural frequency for the simply supported and fully
clamped square plates in contact with a cubic volume of #uid using di!erent
numbers of summing terms in series; "ve vibrating beam functions are used in

each direction

m"n X
1

X
2

X
3

X
4

X
5

X
6

SSSS j"c"1

20 11)844 39)243 39)243 66)609 81)644 85)674
50 11)844 39)243 39)243 66)609 81)643 85)674

j"c"1
2

20 12)870 40)718 40)718 68)390 83)718 86)773
50 12)870 40)718 40)718 68)389 83)716 86)770

j"c"1
4

20 13)360 40)887 40)887 68)471 84)398 86)862
50 13)359 40)875 40)875 68)437 84)341 86)797

120 13)359 40)875 40)875 68)436 84)340 86)796

j"c"1
8

20 13)625 41)500 41)500 70)228 90)663 93)352
50 13)611 40)899 40)899 68)451 84)653 86)823

120 13)610 40)894 40)894 68)438 84)631 86)797

j"c" 1
16

20 14)367 46)003 46)003 77)530 95)185 98)294
50 13)746 41)007 41)007 68)764 87)258 89)573

120 13)740 40)898 40)898 68)443 84)789 86)809

CCCC, j"c"1

20 23)097 60)263 60)263 93)645 108)65 115)96
50 23)097 60)263 60)263 93)645 108)65 115)96

j"c"1
2

20 24)662 61)692 61)692 95)009 111)47 116)82
50 24)662 61)691 61)691 95)009 111)47 116)82

j"c"1
4

20 25)420 61)860 61)860 95)091 112)59 116)96
50 25)419 61)848 61)848 95)046 112)48 116)84

120 25)419 61)848 61)848 95)046 112)48 116)84

j"c"1
8

20 25)890 63)413 63)413 98)814 121)73 126)49
50 25)806 61)868 61)868 95)052 113)00 116)87

120 25)805 61)866 61)866 95)047 112)97 116)84

j"c" 1
16

20 27)579 69)855 69)855 107)18 125)36 131)30
50 26)010 62)262 62)262 96)092 117)78 121)92

120 26)003 61)870 61)870 95)050 113)22 116)85

VIBRATION OF RECTANGULAR CONTAINER BOTTOM PLATE 349



350 Y. K. CHEUNG AND D. ZHOU
AVMI factors (Lamb 1921; Kwak 1991), are those of AVMI matrix MI of the #uid. The
AVMI matrices for a simply supported square plate placed on the middle of the bottom and
in contact with a cubic volume of #uid are given by using two vibrating beam functions in
each direction, as follows:

MI "

4)428]10~1 !2)263]10~17 !2)266]10~17 1)176]10~33

!2)263]10~17 1)449]10~1 1)176]10~33 !8)247]10~18

!2)263]10~17 1)176]10~33 1)449]10~1 !8)216]10~18

1)176]10~33 !8)247]10~18 !8)216]10~18 1)010]10~1

(38)

for j"c"1,

MI "

3)374]10~1 !9)325]10~18 !9)452]10~18 3)367]10~34

!9)325]10~18 1)171]10~1 3)367]10~34 !1)553]10~18

!9)452]10~18 3)367]10~34 1)171]10~1 !1)433]10~18

3)367]10~34 !1)533]10~18 !1)433]10~18 8)319]10~2

(39)

for j"c"1
2
,

MI "

2)953]10~1 1)085]10~17 1)136]10~17 1)079]10~33

1)085]10~17 1)143]10~1 1)079]10~33 8)181]10~18

1)136]10~17 1)079]10~33 1)143]10~1 7)708]10~18

1)079]10~33 8)181]10~18 7)708]10~18 8)272]10~2

(40)

for j"c"1
4
, and

MI "

2)755]10~1 1)827]10~17 1)818]10~18 2)957]10~34

1)827]10~17 1)140]10~1 2)957]10~34 !6)887]10~19

1)818]10~18 2)957]10~34 1)140]10~1 1)162]10~17

2)957]10~34 !6)887]10~19 1)162]10~17 8)270]10~2

(41)

for j"c"1
8
.

From the above four matrices, one can see that they are all nearly diagonal; in fact, the
absolute o!-diagonal elements are at least 14 orders of magnitude smaller than the diagonal
ones, which means that ignoring the o!-diagonal elements will not result in large errors. It is
clear that more diagonal dominant elements in the matrix MI will result in closer solutions
to the AVMI factor solutions. When all the o!-diagonal elements are approximated as
zeros, the AVMI factor solutions can be expressed as XI

i
"XM

i
/J1#4MI

ii
. The percentage

errors e
i
"(1!XI

i
/X

i
)]100 (i"1, 2, 3, 4) of the "rst four natural frequencies between the

AVMI factor solutions and the analytical-Ritz solutions are given in Figure 2. One can see
that the maximum absolute error which occurs in j"c"1 (in such a case, the bottom is
completely elastic) is less than 0)116%. The same conclusion can be reached for the fully
clamped square plates. The AVMI matrices for a fully clamped square plate placed on the
middle of the bottom and in contact with a cubic volume of #uid are given by using two



Figure 2. The percentage errors e
i
(i"1, 2, 3, 4) of the "rst four natural frequencies of the AVMI solutions with

respect to the analytical-Ritz solutions for a simply supported square plate in contact with a cubic volume of #uid
as a function of #uid}plate width ratio c: *r*, e

1
; *j*, e

2
, e

3
; *m*, e

4
.
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vibrating beam functions in each direction, as follows:

MI "

1)388 !4)439]10~8 !4)439]10~8 2)933]10~15

!4)439]10~8 4)734]10~1 2)933]10~15 !3)115]10~8

!4)439]10~8 2)933]10~15 4)734]10~1 !3)115]10~8

2)933]10~15 !3)115]10~8 !3)115]10~8 3)313]10~1

(42)

for j"c"1.

MI "

1)105 !3)995]10~8 !3)995]10~8 2)703]10~15

!3)995]10~8 4)105]10~1 2)703]10~15 !2)828]10~8

!3)995]10~8 2)703]10~15 4)105]10~1 !2)828]10~8

2)703]10~15 !2)828]10~8 !2)828]10~8 2)967]10~1

(43)

for j"c"1
2
.

MI "

9)858]10~1 !3)949]10~8 !3)949]10~8 2)697]10~8

!3)949]10~8 4)038]10~1 2)697]10~8 !2)820]10~8

!3)949]10~8 2)697]10~8 4)038]10~1 !2)820]10~8

2)697]10~8 !2)820]10~8 !2)820]10~8 2)958]10~1

(44)

for j"c"1
4
, and

MI "

9)285]10~1 !3)944]10~8 !3)944]10~8 2)697]10~15

!3)944]10~8 4)030]10~1 2)697]10~15 !2)820]10~8

!3)944]10~8 2)697]10~15 4)030]10~1 !2)820]10~8

2)697]10~15 !2)820]10~8 !2)820]10~8 2)958]10~1

(45)

for j"c"1
8
.



Figure 3. The percentage errors e
i
(i"1, 2, 3, 4) of the "rst four natural frequencies of the AVMI solutions with

respect to the analytical-Ritz solutions for a fully clamped square plate in contact with a cubic volume of #uid as
a function of #uid}plate width ratio c: *r*, e

1
; *j*e

2
, e
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TABLE 4

The "rst six dimensionless natural frequencies of a square plate in contact wtih a cubic
volume of #uid for di!erent locations on the bottom

m
0

g
0

X
1

X
2

X
3

X
4

X
5

X
6

SSSS

0)0 0)0 12)065 39)978 40)146 67)579 82)673 86)214
1
8

12)568 40)357 40)508 68)032 83)320 86)495
1
4

12)739 40)392 40)559 68)043 83)496 86)506
3
8

12)785 40)394 40)569 68)044 83)543 86)508

1
8

1
8

13)006 40)790 40)814 68)415 83)940 86)782
1
4

13)159 40)828 40)841 68)425 84)108 86)788
3
8

13)197 40)833 40)846 68)427 84)154 86)789

1
4

1
4

13)288 40)863 40)867 68)434 84)260 86)795
3
8

13)325 40)870 40)871 68)436 84)301 86)759

3
8

3
8

13)359 40)875 40)875 68)436 84)340 86)796

CCCC

0)0 0)0 23)381 60)963 61)145 94)389 109)86 116)38
1
8

24)184 61)352 61)497 94)737 110)87 116)60
1
4

24)457 61)370 61)548 94)745 111)18 116)61
3
8

24)530 61)372 61)558 94)746 111)27 116)61

1
8

1
8

24)868 61)762 61)787 95)029 111)18 116)83
1
4

25)102 61)799 61)814 95)037 112)09 116)83
3
8

25)167 61)805 61)819 95)038 112)17 116)83

1
4

1
4

25)308 61)835 61)840 95)044 112)35 116)84
3
8

25)365 61)842 61)843 95)045 112)42 116)84

3
8

3
8

25)419 61)848 61)848 95)046 112)48 116)84
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Figure 4. The ratios r
i
(i"1, 2,2, 6) of the "rst six natural frequencies of a simply supported square plate in

contact with #uid with respect to those in air as a function of depth ratio b of the #uid: *r*, r
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Figure 5. The ratios r
i
(i"1, 2,2 , 6) of the "rst six natural frequencies of a simply supported square plate in

contact with #uid with respect to those in air as a function of #uid}plate width (or length) ratio c (j"c) with #uid
depth ratio b"c: *r*, r

1
; *j*, r

2
, r

3
; *m*, r

4
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5
; 22* , r

6
.
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It can be seen that the o!-diagonal elements in the above four matrices are also very small
compared to the diagonal ones. Although the dominance of the diagonal for the fully
clamped square plate is relatively lower than that of the simply supported square one, the
concept of AVMI factor solutions is still applicable in this case. The percentage errors e

i
(i"1, 2, 3, 4) of the "rst four natural frequencies between the AVMI factor solutions and
the analytical-Ritz solutions for the fully clamped square plate in contact with #uid by using
"ve vibrating beam functions are given in Figure 3. One can see that the maximum absolute
error which occurs in j"c"1 is less than 0)85%. Moreover, it should be mentioned that,
because the exact mode solutions for the fully clamped square plate in air cannot be
obtained, approximate solutions, which result in a nondiagonal sti!ness matrix K, have to



Figure 6. The ratios r
i
(i"1, 2,2 , 6) of the "rst six natural frequencies of a simply supported square plate in

contact with #uid with respect to those in air as a function of #uid}plate width (or length) ratio c (j"c) with #uid
depth ratio b"2c: *r*, r
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be used. In this case, even if the o!-diagonal elements in MI are neglected, an eigenvalue
solution procedure still has to be carried out to obtain the AVMI factor solution XI .

6.3. RESULTS

As an application example, some numerical results are given in this subsection. The e!ect of
the location of simply supported and fully clamped square plates, placed in the rigid bottom
of a square container "lled with a cubic volume of #uid, on the "rst six natural frequencies of
the system is studied in Table 4. The side-lengths of the plate are a quarter of the bottom.
A careful scrutiny of the results reveals that the closer the plate is to the corner of the
bottom, the lower are the natural frequencies; the closer the plate is to the centre of the
bottom, the higher are the natural frequencies.

The e!ect of the depth ratio of the #uid on the "rst six natural frequencies of the
#uid}plate interaction is studied for the simply supported square plates, in which the
bottom of the container is entirely occupied by the elastic plate. The ratios r

i
"X

i
/XM

i
(i"1, 2,2 , 6) between the natural frequencies of the &&wet'' plate and those of the &&dry''
plate are given in Figure 4, where X

1
, X

5
and X

6
are the "rst three frequencies of double-

symmetric modes, X
2

and X
3

are the frequencies of symmetric}antisymmetric and antisym-
metric}symmetric modes, and X

4
is the frequency of double-antisymmetric modes. It is seen

that the e!ect of the #uid depth on the "rst two frequencies of double-symmetric modes X
1

and X
5
, especially on the fundamental frequency X

1
is larger than that on the other

frequencies. With the increase of the #uid depth, X
1

and X
5
, especially the fundamental

frequency X
1
, monotonically decrease; however, the other frequencies steadily approach

constant values. The e!ect of the horizontal sizes (width and length) of the #uid domain on
the "rst six natural frequencies of the #uid}plate system is studied in Figures 5 and 6 for the
simply supported square plates placed on the centre of a square bottom (j"c). Two
di!erent #uid depths are considered, respectively: b"c and b"2c. It is seen that with the
increase of the horizontal width of the #uid, the natural frequencies of the system decrease
steadily to constant values, which once again means that the errors will be very small if
a #uid domain of in"nite width and length is approximated by a #uid domain of "nite but
larger width and length.



Figure 7. The ratios r
i
(i"1, 2,2 , 6) of the "rst six natural frequencies of a simply supported square plate in

contact with a cubic volume of #uid with respect to those in air as a function of #uid}plate density ratio q:*r*,
r
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Figure 8. The ratios r
i
(i"1, 2,2 , 6) of the "rst six natural frequencies of a simply supported square plate in

contact with a cubic volume of #uid with respect to those in air as a function of thickness ratio p of the plate:*r*,
r
1
; *j*, r
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In Figure 7, the e!ect of the #uid}plate density ratio on the "rst six natural frequencies of
the #uid}plate interaction is studied for the simply supported square plates occupying the
entire bottom of the container and in contact with a cubic volume of #uid. It is seen that,
with the decrease of the #uid}plate density ratio, the natural frequencies of the system
monotonically decrease.

The e!ect of the thickness ratio p of plates on the "rst six natural frequencies of the
#uid}plate interaction is given in Figure 8 for the simply supported square plates entirely
occupying the bottom and in contact with a cubic volume of #uid. It is shown that with the
decrease of the thickness ratio of the plate, the natural frequencies of the system will increase
monotonically.
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7. CONCLUSIONS

The vibratory characteristics of an elastic rectangular plate in contact with #uid on one side
are studied in detail. The plate is considered as a part of the rigid bottom of a rectangular
container "lled with #uid having a free surface. The analytical-Ritz method with highaccur-
acy and small computational cost is developed to analyse the vibration of the #uid}plate
system. The convergence studies demonstrate the high accuracy and the rapid convergence
of the approach presented in this paper. In this study, the AVMI factor solutions are also
compared with the analytical-Ritz solutions, and the applicability of the AVMI factor
solutions is con"rmed. The e!ects of the #uid}plate size and density ratios on the natural
frequencies of the system are studied in detail and some interesting conclusions are
obtained. The results show that the method is also applicable to a horizontal rectangular
plate in contact with an in"nite #uid by replacing the in"nite #uid with a #uid of "nite but
larger size in the computations.
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